Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 905
Filtrar
1.
Mar Environ Res ; 197: 106456, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522120

RESUMO

This study evaluated how estuary of origin and ontogenetic stage influence the fatty acid (FA) composition in the tissues of wild European sea bass juvenile. We evidenced tissue-specific patterns, with the brain exhibiting a distinct FA composition from the liver and muscle. Ontogenetic stage and estuary influenced the general FA profile, and particularly the essential FA (EFA) like docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and arachidonic acid (ARA) in all tissues. The data also revealed the ability of wild sea bass to modulate, at the molecular level, FA biosynthesis pathways and suggest a potential dietary DHA limitation in the natural environment. The distribution of FA within tissues might reflect shifts in diet, metabolic demands, or adaptations to environmental conditions. This study provides insights about FA dynamics in euryhaline fish during juvenile life stage, improving our understanding of the metabolism need and EFA trophic availability in a changing environment.


Assuntos
Bass , Ácidos Graxos , Animais , Ácidos Graxos/metabolismo , Bass/metabolismo , Estuários , Dieta , Ácido Araquidônico/metabolismo
2.
Food Chem ; 448: 138999, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38522302

RESUMO

Umami peptides originating from fermented sea bass impart a distinctive flavor to food. Nevertheless, large-scale and rapid screening for umami peptides using conventional techniques is challenging because of problems such as prolonged duration and complicated operation. Therefore, we aimed to screen fermented sea bass using peptidomics and machine learning approaches. The taste presentation mechanism of umami peptides was assessed by molecular docking of T1R1/T1R3. Seventy umami peptides identified in fermented sea bass predominantly originated from 28 precursor proteins, including troponin, myosin, motor protein, and creatine kinase. Six umami peptides with the lowest energies formed stable complexes by binding to T1R3. SER170, SER147, GLN389, and HIS145 are critical binding sites for T1R1/T1R3. Four dominant interacting surface forces were identified: aromatic interactions, hydrogen bonding, hydrophilic bonds, and solvent-accessible surfaces. Our study unveils a method to screen umami peptides efficiently, providing a basis for further exploration of their flavor in fermented sea bass.


Assuntos
Bass , Aprendizado de Máquina , Peptídeos , Paladar , Bass/metabolismo , Animais , Peptídeos/química , Fermentação , Simulação de Acoplamento Molecular , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Aromatizantes/química , Aromatizantes/metabolismo , Humanos , Proteômica
3.
Dev Comp Immunol ; 154: 105144, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38316232

RESUMO

Antimicrobial peptides (AMPs) are an essential part of the vertebrate innate immune system. Piscidins are a family of AMPs specific in fish. In our previous investigation, we identified four paralogous genes of piscidins in the orange-spotted grouper (Epinephelus coicodes), which exhibited distinct activities against bacteria, fungi, and parasitic ciliated protozoa. Piscidins demonstrated their capability to modulate the expression of diverse immune-related genes; however, their precise immunoregulatory functions remain largely unexplored. In this study, we examined the immunomodulatory properties of putative mature peptides derived from four E. coicodes piscidins (ecPis1S, ecPis2S, ecPis3S, and ecPis4S) in head kidney leukocytes (HKLs) or monocytes/macrophages (MO/MΦ)-like cells isolated from E. coicodes. Our data demonstrate that E. coicodes piscidins exhibit immunomodulatory activities supported by multiple lines of evidence. Firstly, all four piscidins displayed chemotactic activities towards HKLs, with the most potent chemotactic activity observed in ecPis2S. Secondly, stimulation with E. coicodes piscidins enhanced respiratory burst and phagocytic activity in MO/MФ-like cells, with ecPis3S showing the highest efficacy in increasing phagocytosis of MO/MΦ-like cells. Thirdly, mRNA expression levels of chemokine receptors, Toll-like receptors, T cell receptors, and proinflammatory cytokines were modulated to varying extents by the four piscidins in E. coicodes HKLs. Overall, our findings indicate that the immunological activities of these four paralogous piscidins from E. coicodes are exhibited in a paralog-specific and concentration-dependent manner, highlighting their distinct and versatile immunomodulatory properties. This study makes a significant contribution to the field of fish AMPs immunology by elucidating the novel mechanisms through which members of the piscidin family exert their immunomodulatory effects. Moreover, it provides valuable insights for further exploration of fish immunomodulating agents.


Assuntos
Bass , Animais , Bass/genética , Bass/metabolismo , Sequência de Aminoácidos , Peptídeos Antimicrobianos , Quimiotaxia , Explosão Respiratória , Peptídeos Catiônicos Antimicrobianos/metabolismo , Alinhamento de Sequência , Proteínas de Peixes/metabolismo , Macrófagos/metabolismo , Fagocitose
4.
Fish Shellfish Immunol ; 146: 109408, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307301

RESUMO

Small ubiquitin-like modifier (SUMO) is a reversible post-translational modification that regulates various biological processes in eukaryotes. Ubiquitin-conjugating enzyme 9 (UBC9) is the sole E2-conjugating enzyme responsible for SUMOylation and plays an important role in essential cellular functions. Here, we cloned the UBC9 gene from sea perch (Lateolabrax japonicus) (LjUBC9) and investigated its role in regulating the IFN response during red-spotted grouper nervous necrosis virus (RGNNV) infection. The LjUBC9 gene consisted of 477 base pairs and encoded a polypeptide of 158 amino acids with an active site cysteine residue and a UBCc domain. Phylogenetic analysis showed that LjUBC9 shared the closest evolutionary relationship with UBC9 from Paralichthys olivaceus. Tissue expression profile analysis demonstrated that LjUBC9 was significantly increased in multiple tissues of sea perch following RGNNV infection. Further experiments showed that overexpression of LjUBC9 significantly increased the mRNA and protein levels of RGNNV capsid protein in LJB cells infected with RGNNV, nevertheless knockdown of LjUBC9 had the opposite effect, suggesting that LjUBC9 exerted a pro-viral effect during RGNNV infection. More importantly, we found that the 93rd cysteine is crucial for its pro-viral effect. Additionally, dual luciferase assays revealed that LjUBC9 prominently attenuated the promoter activities of sea perch type Ⅰ interferon (IFN) in RGNNV-infected cells, and overexpression of LjUBC9 markedly suppressed the transcription of key genes associated with RLRs-IFN pathway. In summary, these findings elucidate that LjUBC9 impairs the RLRs-IFN response, resulting in enhanced RGNNV infection.


Assuntos
Bass , Doenças dos Peixes , Interferon Tipo I , Nodaviridae , Percas , Infecções por Vírus de RNA , Animais , Percas/genética , Imunidade Inata/genética , Filogenia , Enzimas de Conjugação de Ubiquitina/genética , Cisteína , Proteínas de Peixes/química , Interferon Tipo I/genética , Nodaviridae/fisiologia , Bass/genética , Bass/metabolismo
5.
Sci Rep ; 14(1): 2631, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302608

RESUMO

This study aimed to investigate the effects of adding Nano-Selenium (NSe) and Nano-clay (NC) as feed supplements on European Sea Bass (Dicentrarchus labrax). Two separate experiments were conducted, one with NC and the other with NSe. Each experiment consisted of four sub-groups with varying concentrations of NC or NSe. The expression levels of five immune-related genes (TNF-α, TNF-ß, IL-2, IL-6 and IL-12) were measured using Real-time Quantitative PCR (Rt-PCR) Assay. The results showed an increase in the expression of interleukins (IL-2, IL-6 and IL-12) and pro-inflammatory cytokines (TNF-α and TNF-ß) after exposure to NC and NSe. TNF-α gene expression was significantly higher with both 1 mg and 10 mg concentrations of NC and NSe. TNF-ß gene expression was highest with the 5 mg concentration of NC. The concentrations of 1 mg and 10 mg for NC, and 1 mg, 5 mg, and 10 mg for NSe, led to the highest (p < 0.05) levels of IL-2 expression compared to the control. Similar trends were observed for IL-6 and IL-12 gene expression. Understanding the impact of these concentrations on gene expression, growth rate, biochemical indices, and antioxidant status can provide valuable insights into the potential applications of NC and NSe supplements on European Sea Bass.


Assuntos
Bass , Animais , Bass/metabolismo , Linfotoxina-alfa/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-2/genética , Interleucina-2/metabolismo , Interleucina-6/metabolismo , Interleucina-12/metabolismo
6.
Fish Physiol Biochem ; 50(2): 575-588, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38216846

RESUMO

To investigate the regulatory role of the cyp19a1b aromatase gene in the sexual differentiation of largemouth bass (Micropterus salmoides, LMB), we obtained the full-length cDNA sequence of cyp19a1b using rapid amplification of cDNA ends technique. Tissue expression characteristics and feedback with 17-ß-estradiol (E2) were determined using quantitative real-time PCR (qRT-PCR), while gonad development was assessed through histological section observations. The cDNA sequence of LMB cyp19a1b was found to be1950 base pairs (bp) in length, including a 5' untranslated region of 145 bp, a 3' untranslated region of 278 bp, and an open reading frame encoding a protein consisting of 1527 bp that encoded 508 amino acids. The qRT-PCR results indicated that cyp19a1b abundantly expressed in the brain, followed by the gonads, and its expression in the ovaries was significantly higher than that observed in the testes (P < 0.05). After feeding fish with E2 for 30 days, the expression of cyp19a1b in the pseudo-female gonads (XY-F) was significantly higher than that in males (XY-M) (P < 0.05), whereas expression did not differ significantly between XX-F and XY-F fish (P > 0.05). Although the expression of cyp19a1b in XY-F and XX-F fish was not significantly different after 60 days (P>0.05), both exhibited significantly higher levels than that of XY-M fish (P<0.05). Histological sections analysis showed the presence of oogonia in both XY-F and XX-F fish at 30 days, while spermatogonia were observed in XY-M fish. At 60 days, primary oocytes were abundantly observed in both XY-F and XX-F fish, while a few spermatogonia were visible in XY-M fish. At 90 days, the histological sections' results showed that a large number of oocytes were visible in XY-F and XX-F fish. Additionally, the gonads of XY-M fish contained numerous spermatocytes. These results suggest that cyp19a1b plays a pivotal role in the development of ovaries and nervous system development in LMB.


Assuntos
Bass , Masculino , Feminino , Animais , Bass/genética , Bass/metabolismo , Aromatase/genética , Aromatase/metabolismo , DNA Complementar/genética , DNA Complementar/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo , Ovário/metabolismo
7.
Fish Shellfish Immunol ; 145: 109348, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38163493

RESUMO

Galectins are lectins that bind to ß-galactose and are widely expressed in immune system tissues, playing pivotal roles in innate immunity through their conserved carbohydrate-recognition domains (CRDs). In this present investigation, a tandem-repeat galectin was discovered in the largemouth bass, Micropterus salmoides (designated as MsGal-9). The open reading frame of MsGal-9 encodes two CRDs, each containing two consensus motifs that are essential for ligand binding. MsGal-9 is expressed in various tissues of the largemouth bass, with particularly high expression levels in the liver and spleen. The full-length form of MsGal-9, as well as the N-terminal (MsGal-9-N) and C-terminal (MsGal-9-C) CRDs, were individually recombined. Their ability for nonself recognition was studied. The three recombinant proteins were able to bind to glucan (GLU), peptidoglycan (PGN), and lipopolysaccharide (LPS), with MsGal-9 displaying the highest binding activity. Furthermore, rMsGal-9-N exhibited higher binding activity towards GLU in comparison to rMsGal-9-C. Further investigations revealed that the full-length rMsGal-9 could significantly bind to Gram-positive bacteria, Gram-negative bacteria, and fungi, while rMsGal-9-C specifically bound to Escherichia coli. However, rMsGal-9-N did not exhibit significant binding activity towards any microbes. These findings indicate that MsGal-9 requires both CRDs to cooperate in order to fulfill its nonself recognition function. All three recombinant proteins demonstrated agglutination activity towards various microbes, with MsGal-9 and MsGal-9-N displaying a similar broad binding spectrum, while MsGal-9-C agglutinated three types of bacteria. Moreover, both MsGal-9 and MsGal-9-N were capable of coagulating largemouth bass red blood cells, whereas MsGal-9-C lacked this ability. However, MsGal-9-C played a significant role in enhancing the encapsulation of leukocytes in comparison to MsGal-9-N. All three proteins acted as potential damage-associated molecular patterns (DAMPs), inducing apoptosis in leukocytes.


Assuntos
Bass , Galectinas , Animais , Galectinas/genética , Bass/metabolismo , Sequência de Aminoácidos , Alinhamento de Sequência , Receptores de Reconhecimento de Padrão/metabolismo , Imunidade Inata , Proteínas Recombinantes , Carboidratos , Filogenia
8.
Food Res Int ; 177: 113866, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225136

RESUMO

A lipidomics approach based on liquid chromatography-mass spectrometry was employed to investigate alterations in lipid profiles within the muscles of Asian sea bass (ASB) (Lates calcarifer) post-treatment with plasms-activated water (PAW). Lipidomics studies detected 1500 diverse lipid types in ASB muscles; the phosphatidylcholine (PC) lipid subclass constituted the highest number of lipids (21.07 %), followed by triglycerides (TGs, 20.53 %) and phosphatidylethanolamine (PE, 12.73 %). Comparative analysis between PAW-treated ASB and raw ASB revealed the presence of differentially abundant lipids, with 48 lipids accumulating at high levels and 92 at low levels. Pathway enrichment analysis identified a total of seven lipid-related metabolic pathways; glycerophospholipid metabolism emerged as the predominant pathway. Furthermore, the content of saturated fatty acids in PAW-treated ASB increased from 1059.81 µg/g (raw ASB) to 1099.77 µg/g. Conversely, the content of monounsaturated and polyunsaturated fatty acids decreased from 645.81 µg/g and 875.02 µg/g to 640.80 µg/g and 825.25 µg/g, respectively. Collectively, these results indicate significant alterations in ASB lipid profiles following PAW treatment, establishing a theoretical foundation for understanding the mechanism involved in promoting lipid oxidation.


Assuntos
Bass , Perciformes , Animais , Bass/metabolismo , Lipidômica , 60705 , Cromatografia Líquida , Espectrometria de Massas em Tandem , Ácidos Graxos/metabolismo
9.
Food Chem ; 439: 138098, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043272

RESUMO

A comprehensive LC-MS-based lipidomics analysis of Asian sea bass (Lates calcarifer) muscle after dielectric barrier discharge (DBD) atmospheric plasma treatment was performed. Through the analysis, 1500 lipid species were detected, phosphatidylcholine (PC, 27.80%) was the most abundant lipid, followed by triglyceride (TG, 20.50%) and phosphatidylethanolamine (PE, 17.10%). Among them, 125 lipid species were detected and identified as differentially abundant lipids in Asian sea bass (ASB). PCA and OPLS-DA showed that ASB lipids changed significantly after DBD treatment. Moreover, glycerophospholipid metabolism was key metabolic pathways, as PC, PE, and lysophosphatidylcholine (LPC) were key lipid metabolites. The findings concerning fatty acids revealed that the saturated fatty acids (SFA) content of ASB after DBD treatment increased by 8.54%, while the content of monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) decreased by 13.77% and 9.16%, respectively. Our study establishes a foundation for the lipid oxidation mechanism of ASB following DBD treatment.


Assuntos
Bass , Animais , Bass/metabolismo , Cromatografia Líquida , Lipidômica , Espectrometria de Massas em Tandem , Ácidos Graxos/metabolismo
10.
Sci Total Environ ; 912: 168758, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38008328

RESUMO

Aquaculture of Largemouth Bass (LMB, Micropterus salmoides), an economically important species, is badly affected by the outbreak of bacterial diseases in summer. However, the mechanisms underlying heat-induced disease susceptibility remain largely unknown. In this study, after exposure to 34 °C for 1, 7 and 14 d, the head kidney, spleen and blood of LMB were sampled for biochemical and histological assays to explore the effects of heat exposure on the oxidative and immunological indices. Compared to the controls maintained at 28 °C, chronic heat exposure (34 °C for 14 d) induced oxidative stress, caused cell apoptosis and decreased expression of the immunological genes in the head kidney and spleen tissues; and attenuated the blood immunological indices. Consistent with the impaired immunological functions, chronic heat exposure predisposed LMB to Aeromonas hydrophila infection and significantly (p < 0.001) increased tissue bacterial load. Furthermore, the effects of chronic heat exposure (heat), A. hydrophila infection (infection) and heat exposure followed by A. hydrophila infection (heat + infection) on gene expression in the head kidney and spleen of LMB were characterized by RNA sequencing. The results indicated that chronic heat exposure facilitated the bacteria-elicited changes in expression of the genes involved in a couple of metabolic and signaling pathways in both tissues. Upon heat + infection, the pathways involved in energy production and nutrients biosynthesis were enhanced, whereas those associated with the host cell functions such as cell-cell interactions and cell signaling were depressed. Our data provide new insights into the mechanisms underlying heat-induced disease susceptibility in LMB.


Assuntos
Bass , Animais , Bass/metabolismo , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Estresse Oxidativo , Resposta ao Choque Térmico
11.
J Steroid Biochem Mol Biol ; 236: 106423, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37939740

RESUMO

Across vertebrates, the numerous estrogenic functions are mainly mediated by nuclear and membrane receptors, including the G protein-coupled estrogen receptor (GPER) that has been mostly associated with rapid non-genomic responses. Although Gper-mediated signalling has been characterized in only few fish species, Gpers in fish appear to present more mechanistic functionalities as those of mammals due to additional gene duplicates. In this study, we ran a thorough investigation of the fish Gper evolutionary history in light of available genomes, we carried out the functional characterization of the two gper gene duplicates of European sea bass (Dicentrarchus labrax) using luciferase reporter gene transactivation assays, validated it with natural and synthetic estrogen agonists/antagonists and applied it to other chemicals of aquaculture and ecotoxicological interest. Phylogenetic and synteny analyses of fish gper1 and gper1-like genes suggest their duplication may have not resulted from the teleost-specific whole genome duplication. We confirmed that both sbsGper isoforms activate the cAMP signalling pathway and respond differentially to distinct estrogenic compounds. Therefore, as observed for nuclear estrogen receptors, both sbsGpers duplicates retain estrogenic activity although they differ in their specificity and potency (Gper1 being more potent and more specific than Gper1-like), suggesting a more conserved role for Gper1 than for Gper1-like. In addition, Gpers were able to respond to estrogenic environmental pollutants known to interfere with estrogen signalling, such as the phytoestrogen genistein and the anti-depressant fluoxetine, a point that can be taken into account in aquatic environment pollution screenings and chemical risk assessment, complementing previous assays for sea bass nuclear estrogen receptors.


Assuntos
Bass , Animais , Bass/genética , Bass/metabolismo , Filogenia , Estrogênios/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Mamíferos/metabolismo
12.
Microbiol Spectr ; 12(1): e0453222, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38095472

RESUMO

IMPORTANCE: As a major pathogen, nervous necrosis virus (NNV) infects more than 120 fish species worldwide and is virulent to larvae and juvenile fish, hampering the development of the fish fry industry. Understanding virus-host interaction and underlying mechanisms is an important but largely unknown issue in fish virus studies. Here, using channel catfish ovary and fathead minnow cells as models for the study of innate immunity signaling, we found that NNV-encoded ProA activated interferon signaling via the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) pathway which was still suppressed by the infection of wild-type NNV. This finding has important implications for the comprehension of NNV protein function and the immune response from different cells. First, RIG-I is the key node for anti-NNV innate immunity. Second, the response intensity of RLR signaling determines the degree of NNV proliferation. This study expands our knowledge regarding the overview of signal pathways affected by NNV-encoded protein and also highlights potential directions for the control of aquatic viruses.


Assuntos
Bass , Doenças dos Peixes , Animais , Interferons , Bass/metabolismo , Transdução de Sinais , Imunidade Inata , Proteínas Virais/genética
13.
Environ Pollut ; 341: 122996, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37995956

RESUMO

Micro- and nano-plastics (MNPs) are emerging contaminants found in air, water, and food. Ageing and weathering processes convert aquatic plastics into MNPs which, due to their small size, can be assimilated by organisms. The accumulation of MNPs in aquatic life (e.g., fish, oysters, and crabs) will, in turn, pose risks to the health of ecosystems and human. This study focuses on the uptake, biodistribution, and size-dependent toxicity of polystyrene nano-plastics (PS-NPs) in a commercially important food web, the Australian Bass (Macquaria novemaculeata). Fish were fed artemia containing PS-NPs of various sizes (ranging from 50 nm to 1 µm) for durations of 5 and 7 days. The findings revealed that smaller NPs (50 nm) accumulated in the brain and muscle tissues at higher concentrations, whereas larger NPs (1 µm) were primarily found in the gills and intestines. In addition, an inverse correlation was observed between the size of NPs and the rate of trophic transfer, with smaller PS-NPs resulting in a higher transfer rate from artemia to fish. Polystyrene NPs caused both activation of the enzyme superoxide dismutase and damage to the DNA of fish tissues. These effects were size dependent. Metabolomic analysis revealed that indirect exposure to different-sized PS-NPs resulted in altered metabolic profiles within fish intestines, potentially impacting lipid and energy metabolism. These results offer novel perspectives on the size-specific toxic impacts of NPs on fish and the transfer of plastics through the food chain.


Assuntos
Bass , Poluentes Químicos da Água , Animais , Humanos , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Microplásticos/toxicidade , Microplásticos/metabolismo , Bass/metabolismo , Ecossistema , Distribuição Tecidual , Austrália , Plásticos/metabolismo , Poluentes Químicos da Água/toxicidade
14.
Fish Shellfish Immunol ; 145: 109292, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145783

RESUMO

Type II interferons (IFNs) exert antiviral functions by binding to receptors and activating downstream signaling pathways. However, our understanding of the antiviral functions and the receptor complex model of type II IFNs in teleost fish remains limited. In this study, we determined the functions of type II IFNs (LmIFN-γ and LmIFN-γrel) in Lateolabrax maculatus and assessed their antiviral ability mediated by their combination with different cytokine receptor family B members (LmCRFB6, LmCRFB13, and LmCRFB17). After infection with largemouth bass ulcer syndrome virus (LBUSV), the expression levels of LmIFNs and LmCRFBs increased significantly in vitro and in vivo. Incubation or injection with LmIFNs-His activated the expressions of LmISG15, LmMx, and LmIRF1. LmIFN-γ and LmIFN-γrel both bound to the extracellular domains of the three CRFBs via Pull-down. Furthermore, LmIFN-γ combined with LmCRFB6, LmCRFB6+LmCRFB13, and LmCRFB6+LmCRFB13+LmCRFB17 and LmIFN-γrel combined with all combinations containing LmCRFB17 induced the transcription of downstream genes and reduced the number of LBUSV copies. Therefore, type II IFNs (LmIFN-γ and LmIFN-γrel) contribute to enhanced antiviral immunity in L. maculatus and that ligand-receptor combinations effectively suppress virus replication. These findings provide a reference for future studies of the signal transduction mechanism of type II IFNs in teleost fish.


Assuntos
Bass , Vírus , Animais , Interferon gama/genética , Bass/metabolismo , Transdução de Sinais , Interferons
15.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38038705

RESUMO

We recently reported that supplementing glycine to soybean meal (SBM)-based diets is necessary for optimum growth of 5- to 40-g (phase I) hybrid striped bass (HSB). The present study tested the hypothesis that supplementing glycine to SBM-based diets may enhance the growth of 110- to 240-g (phase II) HSB. HSB (the initial body weight of approximately 110 g) were fed an SBM (58%)-based diet supplemented with 0%, 1%, or 2% of glycine, with l-alanine serving as the isonitrogenous control. There were four tanks per dietary group, with four fish per tank. The fish were fed their respective diets to apparent satiation twice daily. The feed intake and body weight of fish were recorded daily and every 2 wk, respectively. At the end of the 56-d feeding trial, plasma and tissue samples were collected to determine amino acid concentrations and histological alterations, and tissues were used to measure the oxidation of l-glutamate, l-glutamine, l-aspartate, and glycine. Results showed that dietary supplementation with 1% and 2% glycine dose-dependently increased (P < 0.05) the concentration of glycine in the plasma of HSB by 48% and 99%, respectively. Compared with the 0%-glycine group, dietary supplementation with 1% glycine did not affect (P > 0.05) the feed intake of HSB but increased (P < 0.05) their final body weight, weight gain, and gain:feed ratio during the whole period by 13%, 29%, and 21%, respectively. Compared with the 1% glycine group, dietary supplementation with 2% glycine increased (P < 0.05) the feed intake, final body weight, and weight gain of HSB by 13%, 7%, and 14%, respectively. Compared with the 0%-glycine group, fish fed with the 1%-glycine and 2%-glycine diets had a greater (P < 0.05) villus height in the proximal intestine, when compared with the 0%-glycine group. Collectively, these results indicated that SBM-based diets did not provide sufficient glycine for phase II HSB (110 to 240 g) and that dietary glycine supplementation is essential for their optimum growth and intestinal structure.


Glycine is the simplest but the most abundant amino acid in the bodies of animals including fish and pigs. The content of glycine in plant-sourced feedstuffs (e.g., soybean meal) is generally low. Glycine can be synthesized de novo in all animals and, therefore, has traditionally been classified as a nutritionally nonessential amino acid for fish and mammals. However, a capacity for the synthesis of glycine does not necessarily mean its adequate formation by animals. Growing evidence shows that either neonatal pigs fed milk protein-based diets or postweaning pigs regardless of their birth weights do not synthesize sufficient glycine, and must ingest supplemental glycine (e.g., 1% in diets) for optimum growth performance. Similar results have been reported for 5- to 40-g (phase I) juvenile hybrid striped bass (HSB) fed and largemouth bass fed soybean meal-based diets. The present study tested the hypothesis that supplementing glycine to soybean meal-based diets may enhance the growth of 110- to 240-g (phase II) HSB. Results of the current investigation indicate that glycine is also inadequate for normal intestinal structure or maximum growth in phase II HSB fed soybean meal-based diets. Supplementing 1% or 2% glycine to these diets increased protein accretion, weight gain, and feed efficiency in HSB while improving their intestinal structure. These findings indicate an important role for a sufficient provision of dietary glycine in the optimal nutrition, health, and growth of finishing HSB, and have broad implications for developing low-fishmeal diets to enhance fish production and sustain animal agriculture (including aquaculture).


Assuntos
Ração Animal , Bass , Suplementos Nutricionais , Animais , Ração Animal/análise , Bass/metabolismo , Peso Corporal , Dieta/veterinária , Farinha , Glicina/farmacologia , Aumento de Peso
16.
Sci Rep ; 13(1): 21269, 2023 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042956

RESUMO

The large use of fish meal/fish oil in carnivorous fish feeds is the main concern regarding environmental sustainability of aquaculture. Here, we evaluated the effects of an innovative diet, designed to be (1) environmentally sustainable by lowering the marine protein content while being (2) cost effective by using sustainable alternative raw materials with acceptable cost and produced on an industrial scale, on growth performance, gut microbiota composition, health and welfare of European sea bass (Dicentrarchus labrax), a key species of the Mediterranean marine aquaculture, reared in sea cages. Results show that the specific growth rate of fish fed the low marine protein diet was significantly lower than those fed conventional diet (0.67% vs 0.69%). Fatty acid profile of fillets from fish fed a low marine protein diet presented significant lower n-6 and higher n-3 content when compared to conventional ones. Then, a significant increase in the abundance of Vibrio and reduction of Photobacterium were found in the gut of fish fed with the low marine protein diet but effects on sea bass health needs further investigation. Finally, no major health and welfare alterations for fish fed the low marine protein diet were observed, combined with a potential slight benefit related to humoral immunity. Overall, these results suggest that despite the low marine protein diet moderately affects growth performance, it nevertheless may enhance environmental and economic sustainability of the sea bass aquaculture.


Assuntos
Bass , Microbioma Gastrointestinal , Animais , Bass/metabolismo , Dieta , Óleos de Peixe/metabolismo , Ácidos Graxos/metabolismo , Dieta com Restrição de Proteínas , Ração Animal/análise
17.
Cells ; 12(22)2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37998369

RESUMO

(1) Fshß and Lhß showed stronger signals and higher transcript levels from 590 to 1050 dph than at earlier stages, implying their active involvement during primary oocyte development. (2) Fshß and Lhß at lower levels were detected during the phases of ovarian differentiation and oogonial proliferation. (3) E2 concentrations increased significantly at 174, 333, and 1435 dph, while T concentrations exhibited significant increases at 174 and 333 dph. These findings suggest potential correlations between serum E2 concentrations and the phases of oogonial proliferation and pre-vitellogenesis.


Assuntos
Bass , Feminino , Animais , Bass/metabolismo , Diferenciação Sexual , Hormônio Liberador de Gonadotropina , Hormônios Esteroides Gonadais , Subunidade beta do Hormônio Folículoestimulante/genética , Hormônio Luteinizante Subunidade beta , Encéfalo/metabolismo
18.
Viruses ; 15(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005914

RESUMO

Singapore grouper iridovirus (SGIV) is a virus with high fatality rate in the grouper culture industry. The outbreak of SGIV is often accompanied by a large number of grouper deaths, which has a great impact on the economy. Therefore, it is of great significance to find effective drugs against SGIV. It has been reported that edaravone is a broad-spectrum antiviral drug, most widely used clinically in recent years, but no report has been found exploring the effect of edaravone on SGIV infections. In this study, we evaluated the antiviral effect of edaravone against SGIV, and the anti-SGIV mechanism of edaravone was also explored. It was found that the safe concentration of edaravone on grouper spleen (GS) cells was 50 µg/mL, and it possessed antiviral activity against SGIV infection in a dose-dependent manner. Furthermore, edaravone could significantly disrupt SGIV particles and interference with SGIV binding to host cells, as well as SGIV replication in host cells. However, edaravone was not effective during the SGIV invasion into host cells. This study was the first time that it was determined that edaravone could exert antiviral effects in response to SGIV infection by directly interfering with the processes of SGIV infecting cells, aiming to provide a theoretical basis for the control of grouper virus disease.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Iridovirus , Ranavirus , Animais , Bass/metabolismo , Edaravone/farmacologia , Ranavirus/fisiologia , Antivirais/farmacologia , Doenças dos Peixes/tratamento farmacológico , Infecções por Vírus de DNA/tratamento farmacológico , Infecções por Vírus de DNA/veterinária , Proteínas de Peixes/metabolismo
19.
Front Immunol ; 14: 1265963, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022555

RESUMO

The aim of this study was to investigate the effects of sodium butyrate (SB) supplementation on growth performance, antioxidant enzyme activities, inflammatory factors, and hypoxic stress in largemouth bass (Micropterus salmoides). Diets were supplemented with different doses of SB at 0 (SB0), 0.5 (SB1), 1.0 (SB2) and 2.0 (SB3) g/kg. The hypoxic stress experiment was performed after 56 days of culture. The results showed that compared with the SB0 group, the final body weight, weight gain rate and protein deposition rate of the SB3 group were significantly increased (P<0.05), while FCR was significantly decreased (P<0.05). The contents of dry matter, crude lipids, and ash in the SB2 group were significantly higher than those in the SB0 group (P<0.05). The urea level was significantly decreased (P<0.05), and the glucose content was significantly increased (P<0.05) in the SB supplement group. Compared with the SB0 group, the SB2 group had significant reductions in the levels of serum triglyceride, cholesterol, elevated-density lipoprotein cholesterol, and low-density lipoprotein (P<0.05), and significant reductions in the levels of liver alkaline phosphatase and malondialdehyde (P<0.05). The total antioxidant capacity of the SB1 group was higher than that of other groups (P<0.05). Compared with the SB0 group, the mRNA expression of TLR22, MyD88, TGF-ß1, IL-1ß and IL-8 in the SB2 group significantly decreased (P<0.05). The cumulative mortality rate was significantly decreased in the SB2 and SB3 groups in comparison with that in the SB0 group after three hours of hypoxic stress (P<0.05). In a 56-day feeding trial, SB enhanced largemouth bass growth by increasing antioxidant enzyme activity and inhibiting TLR22-MyD88 signaling, therefore increasing cumulative mortality from hypoxic stress in largemouth bass.


Assuntos
Antioxidantes , Bass , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Bass/metabolismo , Ácido Butírico/farmacologia , Suplementos Nutricionais , Fator 88 de Diferenciação Mieloide/metabolismo
20.
Genes (Basel) ; 14(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003039

RESUMO

High temperatures are considered one of the most significant limitations to subtropical fishery production. Largemouth bass (Micropterus salmoides) is an economically important freshwater species grown in subtropical areas, which are extremely sensitive to heat stress (HS). However, comprehensive transcriptomic data for the livers of largemouth bass in response to HS are still lacking. In this study, a comparative transcriptomic analysis was performed to investigate the gene expression profiles of the livers of largemouth bass under HS treatment. As a result, 6114 significantly differentially expressed genes (DEGs), which included 2645 up-regulated and 3469 down-regulated genes, were identified in response to HS. Bioinformatics analyses demonstrated that the 'ECM-receptor interaction' pathway was one of the most dramatically changed pathways in response to HS, and eight DEGs assigned to this pathway were taken as hub genes. Furthermore, the expression of these eight hub genes was determined by quantitative reverse transcription PCR, and all of them showed a significant change at the transcriptional level, suggesting a crucial role of the 'ECM-receptor interaction' pathway in the response of largemouth bass to HS. These findings may improve our understanding of the molecular mechanisms underlying the response of largemouth bass to HS.


Assuntos
Bass , Transcriptoma , Animais , Transcriptoma/genética , Bass/genética , Bass/metabolismo , Temperatura , Perfilação da Expressão Gênica , Fígado/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...